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1 Introduction

The research performed by our group at the Istituto di Struttura della Materia of the Univer-
sitd di Messina, Italy, under the terms of Contract DAJA45-86-C0003 can be summarized
as follows: '

1. Comparison of the experimental data on the scattering properties of aggregated spheres
with the results of our calculations;

2. Study of the effect of clustering and correlation on the optical properties of intermedi-
ate and high-density dispersions of spherical particles within the framework of an
enhanced version of the Bruggeman model.

3. Density dcpcndc'ncc of the absorption coefficient, in the low and intermediate-density
regime, for a dispersion of metal particles.

As a result of the research mentioned above a number of communications have been pre-
sented to International Conferences, one paper containing final results has been submitted
to J. of the Optical Soc. Am. and a thesis for the graduation in physics has been submitted
to the Faculty of Sciences of the University of Messina.

2 Comparison with experimental data

The programs we developed in the last ten years to calculate the properties of clustered
spheres proved to be suitable to deal with a number of physically significant situations.
Nevertheless, since we were asked in several instances how our results compare with the
experimental data, we determined to asses the reliability of our calculations through direct
comparison with the data for single clusters published by Schuermann and Wang. These
authors in fact performed a series of measurements of the forward-scattering amplitudes
of single clusters composed of 2, 4 and 8 spheres both with real and with complex refrac-
tive index as a function either of the angle of incidence of the incoming plane wave or
of the separation of the components. The measurements were actually performed in the
microwave range on dielectric spheres with size parameter ranging from 3 to 8.

Thanks to the flexibility of our programs we were able to reproduce the measurements
within the experimental error, that according to the statement of the authors is of the order
of 10 % in magniiude and 12 in phase. Furthermore, thank to our analysis of the transfor-
mation properties of the forward -scattering emplitude under changes of the direction of
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in incidcnce we are able to justify, on theoretical gmunds; the shape of the curves reported

. by Schuermann and Wang.

The preliminary results of our calculations formed the subject of a Communication
to be published in the Proceedings of the Eurovean Aerosol Conference, held in Vienna,
Austria, on September 18-23, 1989.

3 Influence of clustering and correlation

The optcal and dielectric behavior of high-density dispersions of scatterers is commonly
dealt with within the framework of the Effective Medium Theory using either the Brugge-
man or the -Maxwell-Gamnett model. Unfortunately, both these models were developed
in the dipole approximation, i. e. neglecting the effect of the higher multipoles and in
particular of the magnetic dipole. Although in recent times the Effective Medium Theory
was modified to deal with phenomena definitely attributable to magnetic-dipole effects,
even the most recent improvements are not apphcable but to pamclcs with very small
size-parameter.

To improve on this point and to overcome the limitations of the thcory due to the com-
plete lack of interparticle correlation in the distribution we propose some modifications
to the original mixing rule of Bruggcman The first improvement is o use the full Mic
expansion to describe the the scattering properties of single particles: this allows us to
deal with scatterers with size-parameters up to 1.

As a second improvement we introduced into a distribution of dielectric and metal

" particles a correlation of exclusion designed to prevent contact among the metallic one.

This effect is achieved by putting around each particle a thin dielectric layer with ¢ = 1.
Then, by gradually increasing the thickness of the exclusion layer we were able to follow
the transition from a behavior typical of the Bruggeman model to one more appropriate to
the Maxwell-Garnett model. ‘

As a final improvement we included into our calculations the possibility that the par-
ticles aggregate in pairs thus formmg anisotropic scatterers either all oriented alike or at
random.

The results we got can be summarized as follows. The effective Medium Theory can-
not be appiied to media composed of particles with size-parameters of the order unity: our
calculation show that a size-parameter of the order 0.1 is a practical limit for the reliabil-
ity of the theory. Furthermore, the clustering may have visible effects on the percolation
threshold of a dispersion of metal spheres, specially when the clusters are allowed to orient |
all alike. Finally the introduction of the correlation of exclusion produces a rather sharp




transition from the Bruggeman model to the Maxwell-Garnett model. Nevertheless the
transition is not so sharp as to prevent us from following the change of the behavior of the
dispersion. . K
The calculations summarized above form the subject of a Communication to the 2d
Int. Conf. on Optical Particles Sizing held in Phoenix, Arizona, 4-7 march, 1990. A
complete paper including all our results has been submitted to J. Optical Soc. Am.

4 Density dependence of the absorption coefficient

The problem of the density dependence of the absorption coefficient of a dispersion of
particles is of paramount importance both from the theoretical and from the experimental
point of view. It is well known, indeed, that one often speaks of low-density or of high-
density dispersions, but on the precise definitions of these terms there exist only some rule
of thumb based on the knowledge gained from experiments. For this reason we put Mr
Fucile, one of our undergraduate students, in charge of a researck aimed at developing
a suitable method to determine the density dependence of then absorption coefficient of
a dispersion of spherical particles, as part of a graduation thesis to be submitted to the’
Faculty of Sciences of our University.
' The method used by Mr Fucile is based on the fact that the density dependence of
the optical properties of a dispersion is due to the progressive increase of the multiple
scattering effects and that effects of this kind are fully accounted for by the method we
used till now to deal with clusters of spheres. Therefore the dispersion was considered
- as composed of pairs of spherical scatterers. The properties of each pair were caiculated
through our usual method including the analytic average over the orientations. The product
of this calculation is the average forward-scattering amplitude of a pair which stili depends,
however, on tiie separation of the component spheres. At this stage we take advantage of
the results of statistical physics to set up the pair correlation function appropriate for the
density under consideraton and to use it to perform an average over the szparation of the
particles. As a result we get an effective spherical scatterer dressed by the effects due’

to the presence, in th2 dispersion, of other particles. At this stage the calculation of the

optical properties of the dispersion is only a matter of using well known formulas. .

As noted above, this research is the subject of a graduation thesis (in italian, of course),
but we also extracted a preliminary Communication to the 3d Conference of the European
Colloid and Interfaces Society to be held in Copanello, Italy, next September. We plan to
submit a complete paper after the graduation of Mr Fucile.
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AN ENHANCED BRUGGEMAN SCHEME AND THE PERCOLATION THRESHOLD
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1. INTRODUCTION

It is well known that the propagation of the electromagnetic waves trough a composite can be studied by the effective medium
theory provided that the particles be small cnough with respect to the wavelength that a dielectric description of the composite
as a whole is still meaningful’ 2. A possible way to deal with this problem is, indeed, to think of the the macroscopic propertics
of a compositc as a space average of its local propertics and consequently to substitute the actual medium with an effective one.
In practice the cffective medium theory achicves this goal through the definition of a homogencous medium capable of fitting
the cverage propagalion propertics of the composite in such a way that, if this latter is embedded into the effective medium, no
scattering is experienced! 2. Unfortunately there is no universal recipe 10 build the diclectric constant of the effective medium,
since the propertics of a composite, depend on the nature, the shape and the size as well as on the concentration and on the
possible correlation in the distribution of the constituent particics.

A particularly simple modcl composite medium, that in the framework of the effective medium theory leads (o the so called
Bruggeman mixing rule, is composed of spherical particies of very small size parameter with totally uncorrelated space distnbu-
tion. If into the modat above is forced cnough correlation as to ensure that the particles arc wetl separated and dispersed within
a homogcncous matrix, onc is Icad, instcad, to the Maxwell-Garneut mixing rule? . Of course, apart from such a rough trcatment
of the corrclation, the approximations of the two models above arc rather scvere as in actual composite media the size parameter
of the particics is often not very small and the particles themsclves may have a definitely nonspherical shape. In this respect
the possibility of aggregation of several spherical particles should aiso be considered as this phenomenun produces cifectively
nonspherical scatterers® . Even by assuming that all the particles are actually spherical, their radii are seldom identical but are in
general distributed within a more or less wide range. The literature reports several attempts {0 overcome at least some of these
approximations: for instance, a dynamical cxtension of the Bruggeman rule applicable to size parameters up to 0.01 has been
proposed by Stroud and Pan !, while a similar extension of the Maxwell-Gamett rule and a distribution function for mc radii
have been introduced by Chylck and Srivastava ¢

In this paper we introduce a modified Bruggcman model to be applied when the size paramcter of the particles is extended
up to0 0.1. Our extension is cffected by describing the particlcs through the exact Mie amplitudes®$ and including up to the
quadrupole crms for the largest spheres. We tentatively considered also a medium composed of pasticles with'size parameter
up 10 ~ 1.0 by including terms up to the 2*-poles 1o ensure the convergency of our calculations. Nevertheless, we do not
regard the results we obtained for this later medium as reliable although they come out as a natural and smooth evolution of
the results for spheres with smaller size. Indeed, we think that any auempt to describe the properties of a medium too coarsely
grained with respect to the wavelength of the propagating radiation by the effective medium theory is bound to fail.

We apply our modified model to study also how the correlation affects the behavior of the percolation of a composite made
of metal and of dielectric particles. The kind of correlation we forced onto this composite is a correlation of exclusion among
the metal particles that we introduced within the framework of our Bruggeman-Mie model by putting around each metal sphere
a very wnin dielectric layer. Then, by increasing the thickness of the layer we are able to follow by our calculations the rather
sharp decrease of the absorption that comes with the implied transformation of the topology trom that of Bruggeman model to
that of the Maxwell-Gamelt one

2. THEORY.

The effective medium theory defines e.q as the diclectric constant of the homogencous medium that can be substituted to the
rcal medium without affecting the propagauon of the electromagncetic waves. This is accomplished by requiring that e.g satisfics
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the null scattering condition and is thus the solution to the equaﬁon"
3" Nifpilea) =0, W
§ . .
with

: "‘*“‘fw.t" é; : ’n.i-

where &, is the ‘polarization vector of the plane wave and f,,; is the normalized forward-scattering amplitude of any of the N;

identical particles of the 1-th kind when immersed into the homogeneous effective medium of diclectric constant e.s.
According to Mie, the normalizcd forward-scattering amplitude of a homogeneous spherical particle with refractive index

n= \/e embedded in a homogeneous medium of refractive index nyy — in the Present Case Ry = ner = (/€at — is given by

Wi (p) . ' . .
m,._ Z,_: Atm @
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where the polarization index 7 has been dropped for the sake of simplicity, k = w/c and
AP = RP WP ' ) €)

In cqs. (2) and (3) the W,‘,:’ *s are the multipole amplitudes 6( the incident plane wave, the Aﬁ,’: 's are those of the scattered field
and . " : .
(1+ 76,0) Ujug = (1 + #76,0) Ua)

— ; )
(1 + Ay YUgue = (1 + Wby ) Upy,

RY =

with

t

. ; U n
%e = Yoo Ven), Ve = yulhgn(!]nl). Ur=ys(y), 7= r =1, Yt = NenZ, y = nz.

£
z = kp is the size parameter of the particle with radius p and p.is a parity index that distinguishes the magnctic multipoles
(p = 1) from the clectric oncs (p = 2). Accordingly, R refers (o the magnetic and Ry to the electric 2¢-pole. When
Jyen} € 1 cq. (4) can be cxpanded in terms of y.,, and onc gets

' 2 4 e~¢ T \
Do Ly S e Do - .
R(I = 3‘!/&“(__2(‘“' R(l = 45 9:::( - l/ ) _ . ¢

while the R{'s for £ > 1 are smaller. As a consequence, in the limit z; — 0, only the R‘”'s as given in cq. (5) can be
considered in ¢q. (1) and onc obtains the well known Bruggeman mixing rule* .

YV =0, | ©

where V; = N,v;/V is the fraction of the total volume of the composite filled by the N; spheres each of volume v;, dielectric

constant ¢; and size parameter z,. In order to get a dynamical extension of the Bruggeman mixing rule, Stroud and Pan' do not

neglect the R‘” term and thus include into the expansion of eq. (2) also the magnetic dnpole term, Since they take R“) and
B2 in the form of cq. (5), their mixing rule reads

2
E | ST T e '
; V‘[enzuy*’ 30((' tw)} =0 ' @
and thus appears as an extension of eq. (6) to rather larger, although still small, sizes. The mixing rule of Ch§lek and Srivastava®

lics on the very same appmximations but these authors include size-dependent terms only when ¢ is very large — for instance,
this is the case of metal spheres. They also include a size-dismbuu'on function A(p) and write

;v “'_2(“}« 3 —5-;; (e,—-edy)/ p*i(p)dp=0. C@®)
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Cbviously, the size-dependent terms in eq. (8) assume the same form they have in eq. (7) when )\;(p) = N;6(p; ~ p).

Since the only common imp'ementations of eq. (1) are the zero-size approximation, ¢q. (6), and the small-size approxi-
mation, egs. (7) and (8), we determined o test the reliability of the null scattering condition, eq. (1), when applied 1o larger
particles. In practice, all the calcuiations we will present in the next section were performed by carrying to full cunvergency the
exact Mie expansions 10 the effect of ensuring the inclusion of all significant contributions to the scattering ampiitude, eq. (2).
In this way we overcame all the limitaticns due to the small size of the particles but those that prevent the possibility of dealing
with the whole medium through a dielecuic description.

As mentioned in the preceding section, we also considered a model composite medium which, in a scnse is a hybrid be -
tween that of Bruggeman and that of Maxwell-Gamnett; namely we calculated e« for a dispersion of homogeneous dielectric
spheres with € = ¢p and of spheres with a metal core, of diclectric constant ¢, coated by a thin dielectric layer. The scattering
properties of the coated spheres were not described through an approach based on the boundary conditions at the separation
surface but rather by interposing between the core and the coating a very thin transition layer’ through which

Teme(r) men+ (322 -25)A
with
" Amep—~ey ad 9= —’:—”-!—,
. PD~ PM
wicre py is the radius of the metal core ana pp the inner radius of the diclectric coating. In this way we achieved . smooth
transition between the two materials as ihe refractive index n = n(r) is a regular function of r everywhere within the coated
spheres. Conscquendy cd. (4) must be substituted by *4 :
k(n) - G = (14 78,2)2 G uy ' ' ©)
t TGP v~ (1+76,) G,

where G = G () are now calculated by numerical integration of the radial cquations

dele’) _zandc‘, 4_[”z Z(e+1)]c(,,
ag? ndé d€ €2 _

with £ = xr. Of course, when the spheres are homogcneous €p = ey and cq. (9) reduces to cq. (4). As a mauer of fact,

all the calculations we will present in the next section were performed by using cq. (9), or cq. (4) when appropriate, with

no approximation. It is also worth noticing that our previous calculations’ proved thm the introduction of the transition laver,

providced it is thin ¢cnough, has no influcnce on the results. :

3. RESULTS AND DISCUSSION.

All the composile media we dealt with in our calculations are two-componcm ones; the first component is a diclectric with
ep = .1 and the sccond is a metal with

1 v ‘ , '
PerTs o

where v = w/wy, v = 1/(1wy), viz. the dielectric material is the vacuum while the metallic component is described by the
free-clectron Drude constant? . This choice allows us an easy companson with the preceding results of Stroud and Pan' and of
Chylek and Srivastava®. Anyway, we think that a greater sophistication of the description of the metallic componerd is of no
uscfulness within a framework substantially as naive as the effective medium one.

If we assume the particlcs to be spherical, eq. (1) becomes

Vie fuleedt) + (paa/p0) (1 = Vae) fp(eer) = 0, (1)

where pyy is thc radius of the metal sphercs and pp the radius of the dielectric ones, and the f°s are given by eqs. (2), (3) and

4.
When the metal spheres are coated by a dielectric laycr we have

Vi fucCeen) + {ou/pp) (1 = Var(1+ c)1 fp(eem) = 0, 12

where f.,- refers to a sphere with a metal core of radius py, and a diclectric coating layer with external radius

!y:l-—

1/3

pr=(l+¢c) " pu,
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and is thus given by egs. (2), (3) and (9). The quantity ¢, is defined as

oL = v fun,

where vy, is the volume of the diclectric layer: in other words ¢, gives the volume of the diclectric coating around each metal
sphere as a fraction of the volume, vy, of the metal spheres themselves. Of course

l .
Vi € Viuma = ' OSCLSC."NI’V"I-
M

l+CL

| so that when ¢, = 0, i.e. when the spheres have no coating, we get again the topology of the Bruggeman model, whereas, when

€L = €1 maxs W get the Maxwell-Garnett topology. : o

We calculated e according to eqs. (11) or (12} as a function of Vi, for some values of 2y = kpy andof v; vy = 0.01 inall
cases. In particular we report in figs. 1and 2 Im{e.n] ascalculated from eq. (11), and from the two-component implementations
of eq. (6), of eq. (7) with pp = py, and of eq. (8) with a §-like distribution of the radii. Our main purpose is to siiow the most
important features of the absorpticn of a composite medium at frequencies for which the metat component is by itself strongly
absorbing. Thercfore, we chose (o plot our resvlts for v = 0.01, Fig.1, and for v = 0.1, Fig. 2, since, for many metals, these
frequencies occur in the far and in the near infrared, respectively. It is worth noticing that both our egs. (11) and (12) and their
counterpast according 10 Suoud and Pan, eq. (7), show a dependence on the size of the dielectric sphercs. When one assumes
ep = 1, ie. when the diclectric is the vacuum, the problem arises whether its more or less minute subdivision into spherical
cclls may affect the résults. As a matter of fact, we 100k zp = kpp = 10~* as our calculauons evidence that the size of the
vacuum sphcres has very small influcnce cither when their size is reduced to zero according to Chylek and Srivastava or when
it i sct cqual to the size of the metal spheres according 1o Stroud and Pan. Indeed, the results are nearly indistinguishable for
all the sizes of the metal spheres at which the implementations of the effective medium theory we deal with can be assumed to
work correctly. The range of Vi both in F‘ig 1 and in Fig. 2 has been chosen so as to show the influence of the size and of the
frequency on tie transition rom a diclectne behavior to a metllic one. In fact, we thiak that.zyy = 0.1 is an appropriate upper
linut for the applicability of ¢q. (11), viz. it is a practical limit to the size of the grains of a composite medium in order that this
latter, from the point of view of the diclectric propertics, can be substituted by a homegeneous medium. Anyway, on the basis
of our calculations we conclude that, for particles of size greater that 0.1 but rather smaller than 1, the form of Im{ ey} (rom
cq. (1) 1s sull mcaningful both in the small-Vyy region up (o where the transition to the metallic behavior starts to appear and
in the high-Vyy region. In this conncction we recall that cg. (6) should never be applied when z > 0.91 and that egs. (7) and
(8) cannot be thought of as accurate when zy ~ 0.1, because these cquations come out from a serics expansion, ¢q.(5), of the
cxact Mic juantitics, cq. (4). We notice that in Fig. 1 the curve for £y = 0.01 is generated not only by our Bruggeman-Mic
implementition, ¢q. (11), but aiso by the implemzntations of Stroud @G Pan, ¢q. /7), and of Chylck and Srivastava, cq. (8); the
curves from cgs. (7) and (8) for £ = 0.1 do not appear in Fig. 1 for the approximations u. which egs. (7) and (8) are bascd
result in solutions that are physically unacceptable. In fact, these equations, that are algebraic equations of ihe third degree,
yicld valucs of Im[ ¢} that are cither negative or everywhere vanishingly small or very large even in the fow V) region, In
tum, in Fig. 2 the curves from cqs. (7) and (8) for x5y = 0.1 coincide with cach other and are substantially different from that
coming from eq. (11). Morcover, into the curve labelled (1), which refers 10 the results from our Bruggeman-Mie model for
zu = 0 .01, coalesce the results from egs. (7) and (8) for the same size as well as the results from the Bruggeman rule.

In Figs. 3 and 4 we plot Im{e.n] for v = 0 01 and for several values of ¢, as calculatgd according to eq. (14); analogous
resuits were obtained for v = 0.1, It is quite evident that the correlation of exclusion produced by the diclectric coating around
the metal spheres has very strong cfiects even at very low values of ¢;,. Actually, the model descnibed in eq. (12) prevents 2.y
contact among the metal particles and is therefore topologically akin to the Maxwell-Gamett model. As a consequencs, it is
not surprising that, when c;, increases, our results tend very fast 1o those that are typical of the laticr model. Figs. 3 and 4 show
the results for zp = 10~*, At this valu: of 7 the contribution of the vacuum spheres to the scauering amplitude is very weil
apnroxi~ated by the first of of eqs. (5) and such a small size suggests the idea of a diclectric medium which pervades and fills
ail e space around the coated spheres. Actually, any size of the dielectric spheresup o zp = ¢ w proved to be incapable of
affecting the resuits of our calculations from eq. (12). Of course, a more fiexible model than that of eq. (12) can be built by
introducing a distnbution function for the thickness of the dielectric coating, including the possibility of zero thickness. Such
a model would allow for contact among (only a fraction of) the metal spheres, 50 that an appropriate choice of the distribution
functicn should ensure a smoother transition from the results of the Bruggeman model and those of the Maxwetl-Gamnett model.

The results we discussed above show that our Bruggeman-Mie approach yields meaningful results even when appiied to

" particles with z =2 0.1 and in this respect proves superior to the customary approaches, egs. (6)~(8). In tum, our attemplt 10

introduce some correlation among the metal particles, egs. (12), proved 100 effective, perhaps. As remarked above, the amount
of correlation we introduced into our models is so large that the results we reported can give only semiquantitative information,

+d.e. they can sndicare the trend one has to expect in more realistic situations, that could be effectively simulated along the lines

outlined above. As thev stand, the models we presented in this paper can give, inour opinion, useful indications on the dielectric
bechavior of the composite media. .
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Abstract

posites made of particles of relatively large size, possibly correlated in their distribu-
tion, are proposcd. The resulting implementations are applicd to a composite made
of mctal and of diclecric spheres cither uncorrclated or subject 10 a corrclation of
aggregation among the metal particles, or to a carrclation of exclusion that prevents
contact among the mctal spheres. Our calculations show that our enhanced schemes
work well up to sizes =~ 0.1 and that both kinds of corrclation abo. ¢ may have very
strong cffccts on the transition of the compositd from the diclectric to the meuallic
behavior.

Somc crhancements to the Bruggeman mixi‘t); rule designed to decal with com-
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1 Introduction

In the last few years there has been an increase of interest in the propagation of electromag- -
netic waves through composite media in view of the practical relavance of several such
materials {1,2,3]. A possible way to deal with this propagation problem is to think of the
macroscopic properties of 3 composite as a space average of its local properties and conse-
quently to substitute the actual medium with an effective one. In practice this is achieved,
according to the effective medium theory, by building a homogeneous medium capable of
fiting the average propagation properties of the composite in such a way that, if this latter
is embedded into the effective medium, no scattering is experienced [4]. There is no uni-
versal recipe to build the dielectric constant of the effective medium, since the composites,
by their very nature, may have the most diverse constitutions and topologies. In fact, the
properties of a composite depend on the nature, the. shape and the size as well as on the -
concentration and on the possible correlation in the distribution of the particles. A partic-
ularly simple model compgsite medium, that in the framework of the effective medium
theory leads to the so called Bruggeman mixing rule, is composed of spherical particles
of very small size parameter with totally uncorrelated space distribution. If into the model
above is forced enough cosrelation as to ensure that the particles are well separated and
dispersed within 3 homogeneous marrix [2], one is lead, insted, to the Maxwell-Gamnett
mixing rule. Of course, apart from such an extreme treatment of the correlation, which
leads to so different topoli)gics. the approximations of the two models above are rather
severe. In actual composite media, indeed, the size parameter of the particles is often not
very small and the panicle,E themselves may have a definitely nonspherical shape. In this
respect the possibility of aggregation of several spherical panicles should also be consid-
ered as this phenomenon qroduccs effectively nonspherical scatterers. Even by assuming
that all the particles are actuaily spherical, their radii are seldom identical but are in general
distributed within a more or less wide range. Of course some work has been done to over-
come at least some of these approximations: for instance, a dynamical extension of the
Bruggeman rule applicnblé to size parameters up to 0 .01 has been proposed by Stroud and
Pan (4], while a similar extension of the Maxwell-Garnett rule and a distribution function
for the radii have been introduced by Chylek and Srivastava [1].
In this puper we introduce a modified Bruggeman model to be applied when the size
parameter of the particles is extended up to 0 . 1. Our extension is effected by describing the
- particles through the exact Mie amplitudes (5.6] and including up to the quadrupole terms
for the biggest spheres. \i‘c tentatively considered also a medium composed of particles
with size parameter up t ) ~ 1.0 by including terms up to the 2*-poles to ensure the
convergency o our calculations. Nevertheless, we do not regard the results we obtained
1
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for this latter medium as reliable although they come out as a natural and smooth evolution
of the results for spheres with smaller size. Indeed, we think that any attempt to describe
trough the effective medium theory the properties of a medium too coarsely grained with
respect to the wavelength of the propagating radiation is bound to fail.

We apply our modified model to study also the effect of the interparticle correlation

" ._.._on the behavior of the percolation of a composite made of metal and of dielectric parti-

cles. The first kind of correlation we forced onto the composite medium is a correlation

* of exclusion that we introduced within the framework of our Bruggeman-Mie model by

putting around.each metal sphere a very thin dielectric layer. Then, by increasing the

thickness of the layer we are able to follow by our calculations the rather sharp decrease

- of the absorption that comes with the implied transformation of the topology from that of
the Bruggeman model to that of the Maxwell-Garnett one.

When the metal particles of the composite are ailowed to aggregate two other kinds of
correlation set on: the one that produces the aggregation itself and the possible correlation
in the orientations of the resulting anisotropic particles. We assess how the aggregation

affects the dielectric behavior of the composite, at least for the simple case of binary aggre-
gation, by performing some calculations through an approach we developed in the last few
years. In fact, that approach describes the scattering by aggregates of spherical particles
(7] through multipole amplitudes analogous to those of Mie as well as the macroscopic
.optical constants of a low-density dispersion of such aggregates either when they are ori-
ented at random or alike {8]. Our results for the metal-dielectric composite referred to
above show that the aggregation shifts the percolation towards lower concentrations of
the metallic component when the aggregates are randomly oriented; when the aggregates
are all oriented alike larger shifts occur with their magnitude depending on the direction
of incidence and on the polarization of the propagating wave.

2 Theory

The effective medium. theory defines e.¢ as the dielectric constant of the homogeneous
medium that can be substituted to the real medium without affecting the propagation of
the electromagnetic waves. This amounts to say that e.g should satisfy the null scattering
condition, i.e. it is the solution to the equation '

- L Nifailear) =0 (1

© with
‘ fri = é; : fq.i;
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where &, is the polarization vector of the plane wave and f,: is the normalized forward-
scattering amplitude of any of the N; identical particles of the i-th kind when immersed
into the homogeneous effective medium of dielectric constant e.yq.

According to Mie, the normalized forward-scattering amplitude of a homogeneous
spherical particle with refractive index n = ¢!/2 embedded in a homogencous medium of

" refractive index n,,, — in the present case ney, = Neg = el,’,z — is given by
f=- > Wer" Adn, (2)

41rkm..

where the polarization index 1 has been dropped for the sake of simplicity, £ = w/c and
A2 =~RP WD, . 3

In egs. (2) and (3) the W, W{P)’s are the multipole amplitudes of the mmdcm plane wave, the

Oin

APs are thosc of the scattered field and

(1+ n5,,|)U,'u¢ ~(1+ 71’5,,2)U¢u'¢
(1+ '55,,1)[/"0& - (14 ﬁé,,z)Uw;

R( P o

with :
Ue = Vel Ves), Ve = Yeuhy (Yen), Ue = yje(y),
n= -L" 1, Yext = Nenz, y = nx.
Nent

.z = kp is the size parameter of the particle with radius p and p is a parity index that dis-
tinguishes the magnetic multipoles (p = 1) from the electric ones (p = 2). Accordingly,
R“) refers to the magnetic and R} to the electric 2°- -pole. When |yeu] € 1 eq. (4) can
bc expanded in terms of y.,, and one gets

2 €—¢
(2) 3 ext (1) -
Rl = 3 yenc + zce“ RI =~ 45 yeu ( €ext l) . (5)

while the R{”'s for £ > 1 are smaller. As a consequence, if one lets the size parameter z,
of the particles involved in eq. (1) tend to zero, to obtain convergent values for the f;'s,
only the B{?s as given in eq. (5) need be considered; then eq (l) tums into the well
- known Bmggcm:m mixing rule [1])

Z V Ec“ 0 ( 6)

& + Zfeg

4
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where the z; above is the size parameter of any of the N; spheres of volume v; and dielectric
constant ¢; and V; = N,v;/V is the fraction of the total volume of the composite that such
spheres fill. In order to geta dynamxcal extension of the Bruggeman mixing rule, Stroud
and Pan [4] do not neglect the R{" tcrm and thus include into the expansion of eq. (2)
also the magnetic dipole term. Since they take R(n and Rm in the form of eq. (§), their

mixing rule reads
2
| T 2 e — = 7
§;v. L‘_”M 3o ¢s GeH)] 0 @)
and appears as an extensicn of eq. (6) to rather larger, although still small, sizes. The
mixing rule of Chylek and Srivastava [1] lies on the very same approximations but these
authors include the size dependent-terms above only when ¢ is very large — for instance,
this is the case of metal spheres. They also include a size-distribution function A(p) and
write
2n

DI A (c,—wf;/p)«(p)dp 0. (8)

i € + 264{ FileI> 45

Obviously, the size-dependent terms in eq. (8) 2ssume the same form they have in eq. (7)
when A;(p) = N,86(p; - p). '

Smce the only common implementations of cq (1) are the zero-size approximation,
eq. (6), and the small-size approximation, eqs. (7) and (8), we determined to test the
.reliability of the null scattering condition, eq. (1), when applied to larger particles. In
practice, all the calculations we will present in the next section were performed by carrying
to full convergency the exact Mie expansions to the effect of ensuring the inclusion of ail
significant contributions to the scattering amplitude, eq. (2). In this way we overcame all
the limitations due to the small size of the particles but those that prevent the possibility
of treating the whole medium through a dielectric description.

In section 1 we mentioned the special kind of correlation that sets on into the space
distribution when the particles undergo aggregation phenomena. Here we will briefly
describe how these cases can, in principle, be treated. Indeed, we presented elsewhere
~[7] a suitable approach to the scattering properties of an azgregation of spheres (cluster)
designed to yield the forward scattering amphtudc of the aggregate as a whole still in the
. form of eq. (2) but for that

A = —EZ ST Vs, 9

g tm

1

where the quantities 5,7 ,m,. defined in ref. [91, are analogous tothe R{P’s, eq. (3), for
the single spheres and take account of the specific geometry of the aggregation. If, as it
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often occurs, we have to deal with a dispersion of randomly oriented identical aggregates
and f(®) is the scattering amplitude of any one of them with orientation 8, we can sum
over all the orientations and get

N .
= [ ferde = N5,
where f on the right hand side is still in the form of eq. (2) but in this case

A2 = -7y O[5 sl to0)| (10

2£+1

Thanks to the structure of the summation in eq. (10), the resulting A’s are independent of
the particular orientation, 8y, we chose to perform the calculation. The quantities S'in egs.
(9) and (10) are the elements of a matrix that must be obtained by inversion of a square
matrix of order 2 N L( L + 2), defined in ref. 8], where a( is the number of the spheres in
the aggregate and L is the value of £ at which the sums are gruncated. Considerations on
the symmetry of the aggregate, if any, can be used to factorize the matrix to be inverted
{10,11]; in this respect, the most convenient case occurs when the centers of the spheres
lie on a straight line, for the maximum order of the matrices to be inverted is 2L only.
In the next section we will deal with binary aggregates with a truncation £ appropriate to
the size of the spheres so that L < 4 has been sufficient in all cases and the computational
effort has been therefore rather low.

As mentioned in the preceding section, we also considered a model composite medium
which, in a sense, is a hybrid between that of Bruggeman and that of Maxwell-Garnett;
namely we calculated e for a composite inade of homogeneous dielectric spheres with
€ = ¢p and of spheres with a metal core, of dielectric constant €,,, coated by a thin dielec-
tric layer. The scattering properties of the coated spheres were not described through an
approach based on the boundary conditions at the separation surface but rather by inter-
posing between the core and the coating a very thin transition layer [9] through which

e=e(r) =+ (38 =2s%)a
with
I=hu
oD = Pum’
where py, is the radius of the metal core and pp the inner radius of the dielectric coating. In
this way we achieved a smooth transition between the two materials as the refractive index

A=¢ep—¢€y and s=




n = n(r) is a regular function of r everywhere Within the coated spheres. Consequently
eq. (4) must be substituted by [12,6]

(» G( 'U.g—(l'l"ii's 2)2G’(P)u'¢

R 1
¢ T G- (1+ napz)za"’ vy’ (h

=" where G‘ P . d P)(z) are now calculated bv numerical integration of the radial equations

a2G® 2dndG? Qe+
T " ndE dt % * ["2— & ]G?)ﬂ

with ¢ = kr. Of course, when the spheres are homogeneous, €p = €y and eq. (11) reduces
to eq. (4). As amatter of fact, all the calculations we will present in the niext section were
performed by using eq. (11), or eq. (4) when appropriate, with no approximation. It
is worth noticing that our previous calculations [9] proved that the introduction of the
transition layer, provided it is thin enough, has no influence on the results.

3 Results and discussion

All the composite media we dealt with in our calculations are two-component ones; the
first component is a dielectric with ep = 1 and the second is a metal with

1
2] - — 12
ew = 1 v(v+iv)’ (12)

where v = w/w,, 7 = 1 /(1w,), viz. the dielectric material is the vacuum while the metal-
lic component is described by the free-electron Drude constant (13]. This choice allows
us an easy comparison with the preceding results of Stroud and Pan [4] and of Chylek and
Srivastava [1]. Anyway, we think that a greater sophistication of the description of the
metallic component is of no usefulness within a framework substantially as naive as the
effective medium one.

If we assume the particles to be spherical, eq. (1) becomes

Vie FuCeer) + (pu/pp)* (1 = Vig) foleen) = 0, - (13)

where p,, is the radius of the metal spheres and pp the radius of the dielectric ones, and
the f’s are given by eqgs. (2), (3) and (4).




When the metal spheres are coated by a dielectric layer we have

Vi fucleem) + (pa/pp) (1 = Vae(1 + )] fo(ea) =0, (14)

where fyc refers to a sphere with a metal core of radius p,, and a dielectric coating layer
with external radius :

1/3

pr=(1+c1) " pa,

and is thus given by €gs. (2), (3) and (11). The quantity c; is defined as
cL=vr/un

where v, is the volume of the dielectric layer: in other words ¢, gives the volume of the
dielectric coating around each metal sphere as a fraction of the volume, vy, of the metal
spheres themselves. Of course

1 ' 1
=y OSCLS_CLmu="‘""l»

VM S VMmu= 1+C1, VM

~ for a given c;, and for a given V), respectively, so that when ¢, = 0, i.e. when the
spheres have no coating, we get again the topology of the Bruggeman model, whereas,
when Vi = Virmax OF €1 = €1 max We get the Maxwell-Gamett topology
When the spheres aggregate in pairs we have

Viefeleer) + 20on/p0) [ 1 = Vag) folee) =0, (15)

where fc is the contribution of one aggregate averaged over the orientations as described
in the preceding section.

It is perhaps worth noticing that eqgs. (13)-(15), unlike the two-component implemen-
tations of egs. (6)-(8), are transcendent equations in ., and thus mquxre some further
caution in seeking for their solutions.

We calculated e.¢ accordmg to egs. (13), (14) or (15) as a function of V,, for some
values of zyy = kpy and of v; v = 0.01 in all cases. In particular we report in figs. 1
and 2 Im([ €] as calculated from eq. (13), and from the two-component implementations
of eq. (6), of eq. (7) with pp = py, and of eq. (8) with a §-like distribution of the radii.
Our main purpose is to show the most important features of the absorption of a composite
medium at frequencies for which the metal component is by itself strongly absorbing.
Therefore, we chose to plot our results for v = 0.01, Fig 1, and forv = 0.1, Fig. 2, since,
for many metals, these frequencies occur in the far and in the near infrared, respectively.




It is worth noticing that both our egs. (13), (14) and (15) and their counterpart according
to Stroud and Pan, eq. (7), show a dependence on the size of the dielectric spheres. When
one assumes €p = 1, i.e. wien the dielectric is the vacuum, the problem arises whether its
more or less minute subdivision into spherical cells may affect the results. As a matter of
fact, we took zp = kpp = 104 but our calculations confirm that the size of the vacuum
spheres has very small influence either when their size is reduced to zero according to
Chylek and Srivastava or when it is set equal to the size of the metal spheres according to
Stroud and Pan. As expected, our results are nearly independent of the size of the vacuum
spheres, indeed, for all the sizes of the metal spherss at which the implementations of the
effective medium theory we deal with can be assurned to work correctly. Of course this
is true as far as e.g does not become so large within the range of Vy, as to enhance the
size-dependent contributions from the dielectric speres. In practice, the range of V), both
in Fig. 1 and in Fig. 2 is not too large and yet it extends enough to show the influence
of the size and of the frequency on the transition from a dielectric behavior to a metallic
one. In our opinion z)y = 0.1 is an appropriate upper limit for the applicability of eq.
(13), viz. it is a practical limit to the size of the grains of a composite medium in order
that this latter, from the point of view of the dielectric properties, could be substituted by
a homogeneous medium. Anyway, on the basis of our calculations we conclude that, for
particles of size greater that 0.1 but rather smaller than 1, the form of Im[ €] fromeq. (13)
is still meaningful in the small-Vy, region. In this connection we recall that eq. (6) should
never be applied when z > 0 .01 and that egs. (7) and (8) cannot be thought of as accurate
when z,, ~ 0.1, because these equations come out from a series expansion, q.(5), of the
exact Mie quantities, eq. (4). We notice that in Fig. 2 the curves for z,, = 0.1 from egs.
(7) and (8) coincide with each other and are substantially d:fferent from that coming from
eq. (13), while they do not appear at all in Fig. 1 for the approximations on which egs.
(7) and (8) are brsed result in solutions that are physically unacceptable. In fact, these
equations, that are algebraic equations of the third degree, yield values of Im{ e.] that are
either negative or everywhere vanishingly small or very large even in the low V), region.
In Figs. 3 and 4 we plot Im[ e.q] for v = +* .01 and for several values of ¢, as calculated
according to eq. (14); analogous resuits were obtained for v = 0.1. It is quite evident that
the correlation of exclusion produced by the dielectric coating around the metal spheres'

. has very strong effects even at very low values of ¢;. Actually, the model described in

eq. (14) prevents any contact among the metal particles and is therefore topologically
akin to the Maxwell-Garnett model. As a consequence, it is not surprising that, when ¢,
increases, our results tend very fast to those that are typical of the latter model. Figs. 3
and 4 show the results for zp = 10~*. At this value of z the contribution of the vacuum

spheres to the scattering amplitude is very well approxxmated by the first of of eqs. (5)
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and such a small size suggests the idea of a dielectric medium which pervades and fills all
the space around the coated spheres. Even in this case any size of the dielectric spheres
up to zp = ¢ proved to be incapable of affecting the results of our calculations from eq.
(14). Of course, a more flexible model than that of eq. (14) can be built by introducing
a distribution function for the thickness of the dielectric coating, including the possibility
of zero thickness. Such a model would prevent the contact among (only a fraction of) the
metal spheres, so that an appropriate choice of the distribution function should ensure a
smoother transition from the rcsults of the Bruggeman model and those of the Maxwell-
Garnett model.

Figures 5 and 6, where Im[ e.q] is plotted from eq. (15), for v = 0.01, show the
effect of a complete binary aggregation of the metal particies on the transition of a com-
posite medium to the metallic behavior; analogous results were obtained for'v = 0.1.
This kind of effect proves a quite significant one but it is very strongly increased when
to the correlation of aggregation one also adds the request that all the binary aggregates
be likely oriented. Even in this case the value of zp proves to be irrelevant, although the
concegtually most satisfactory choice is that of very small size (in practice zp = 107%).
Both Figures 5 and 6 show that the percolation undergoes a noticeable shift towards higher
values of Vjy when the common orientation of the aggregates is chosen so as their axes’
are parallel to the wavevector of the incident wave. This phenomenon is ‘easily under-
standable if one thinks of the arrangeme.it above as the one that provides the maximum
of metal-free paths to the propagating radiction. On the other hand, the maximum in the
extinction power of the medium that occurs when the the axes of the aggregates are all
paraliel to the electric field can also be attributed to the arrangement, as this choice of the
orientation maximizes the absorption of the individual aggregates. Of course, less strong

_effects should be expected if, more realistically, only a reasonable fraction of the metal
particles were allowed to aggregate.

The results we discussed above show that our Bruggeman-Mie approach ylclds mean-
ingful results even when applied to pdrticles with z ~ 0.1 and in this respect proves
superior to the customary approaches, egs. (6)<8). In turn, our attempt to introduce some
correlation among the metal particles, egs. (14) and (15), proved too effective, perhaps.
As remarked above, the amount of correlation we introduced into our models is so large
that the results we reported can give only semiquantitative information, i.e. they can in-
dicate the trend one has to expect in the more realistic situations that could be effectively
simulated along the lines outlined above. As they stand, the models we presented in this
paper can give, in our opinion, useful indications on the dxclecmc behavior of the com-
posite media.
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Figure captions

Figure 1 : Im{e.q] vs. Vi, fromeq. (13) forv = 0.01 and zp = 10 -*. The results from
egs. (6)—(8) are also reported for the sake of comparison. The label B denotes the
curve from eq. (6); as, on this scale, several curves are undistinguishable from each
other the labels give 1, and the number of the equations that generate the curve.

Figure 2 : Same as Fig. 1 butfory = 0.1.

Figure 3 : Im[e.q] vs. Vy, from eq. (14), calculated for the values of c;, that label the
curves. ) =0.01,zp = 10"* and v = 0 .01.

Figure 4 : Same as Fig. 3 butforzy =0 L

Figure 5 : Im[e.q] vs. Vi, from eq. (15), for binary aggregates with zy; = 0.01,
zp = 10~* and v = 0.01. The unlabelled solid curve refers to randomly oriented
aggregates; that labelled || refers to aggregates all oriented with their axes parallel
to the wavevector and the one labelled L|| refers to aggregates with their axes par-
allel to the electric field of the wave which is assumed to be linearly polarized. The
dashed curve reports, for the sake of comparison, the results from eq. (13).

Figure 6 : Same as Fig. Sbutforzy, =0.1.
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PROPAGATION OF ELECTROMAGNETIC WAVES THROUGH
»  NON-HOMOGENEOUS MEDIA

F.Borghese, P.Denti, R.Saija = Universitd di Messina, )

Istituto di Struttura della Materia, P.0.Box 57, S. Agata Messina, Italy
0.I.Sindoni =~ 'Chemical Research Development and Engineering Center,
Aberdeen P.G., 21010de, USA ~

Abstract: The most significant results we obtained on the propagation of
electromagnetic waves through non homogeneous media are summarized.

1. Iotzodugnion

A fow years agc we -devised a model scatterer suitable for a systematic
study ¢t the optical proeperties of aerosols and in particular of the effects
>f the anisotropy and ot the possible aggregation of the constituent parti-
cles. Indeed, vur model scatterer is built as a cluster of spherical objects
~f arbitrary radii and retractive indexes; the isphetes need not be homogene-
sus oand their relative posltions dare arbitrary to a large extent. The scat-
roering 3t electromagnetic waves by such composite scatterers 1is dealt with
rhrough .the use ot multipole expansions to desczibe both the incident and
thna scattered field as well as the field within the component spheres (1, 2).
The resulting forward scattering amplitude has very simple transformation
p:obcrt;cs under rotat:icon ot the coordinate axes. This allows us to calculate
wory easily the magcrsncopic osptical preperties of a  low-denaity dispersion
:f clusters even when they are2 randomly oriented. In fact, we are able e.g.
to 3tudy the changes ot the spectrum of a dispersion of spherical particles,
toth hemogeneous and non~homogeneous (3,4], when they undergo various stages
14 aqqreqa:xon.snd 2ven when they change their mode of aggregation in, analo-
3y t2 what happens .n Chermical readticns (5], '

In the lLast year we started an attempt to extend dur study to intermedi-~
atze and high=-density Jispersicns through a modified version of the effedtive
madium theorias féi. fosentially the effective medium theories subsrtitute the
actual dispersion with an effecrive medium whose dielectric properties are
Talculated so as to tcmpensate oxactly fo} the scattering produced by the
particies. Cur particular work in this field consists in treating a disper-
sion of metal spheres with size-parameter bigger than that usually dealt
with within the Bruggemann scheme (7] and yet sufficiently small to ensure
the validity of zhe dielectric description of the medium. Accordingly we used
the full Mie expansicn and as a further improvement included some kind cf
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correlation e.g. that produced by aggregation phenomena or by an exclusion
hole around each sphere. This amounts to using a mixed scheme midway between
that of 3ruggemann and that of Maxwell-Garnett. Some of our preliminary re~
sults will be illustrated in Section 3. '

2. Iheoxy '
All the information on the propagation of electromagnetic waves through
a 1ou-density dispersion of scatterers is contained in the matrix of the re-

fractive index (8]

n
Now =5-rw"ﬂ72ﬂ.n 1
- .

where the sum runs over-all the scatterers within the vclume V and

1 . .
, Sean vy fog s = Y- expl-ik R} ST Wit (2)

pLM

In eqg. (2) Uy is the polarization vector and £, the fcrward-scattering am-
plitude of the v-th scatterer; in turn the w“”,,‘I 's are the multipole am-

plitudes of the incident planc-wave field and che a'l?

LH's are their counter-
parts for the scattered field. The superscript p is a parity index which dis-~
tinguishes the magnetic multipole fields (p=1) from the clectric ones (p=2)
(9}. wWhen the scatterer is a cluster of spheres the rultipole amplitudes of
the scattered ficld are
ol == 3 Skl Vil
. LW

where the S's are defined in ref.(3]. The most important feature of the 5's
is that under rotation of the coordinate axes they transform according to the
representations of the full rotation group. A3 a consequence, once the S's
are known for a cluster of given orientation they are immediately known for
any other cluster of different orientat:ion, and the sum in eq.(l) can pe per-
formed analytically.

For intermediate and high~dansity dispersions, the procedure outlined
above does not yield reliable results because the muitiple-scattering pro=-
cesses become more and more important. A possible way to overcome this diffi-
culty is to resort to the effective medium theories such as the well-known
mixing rules of Bruggeman, and of Maxwell-Garnett. The general principle on
which these rules are based was outlined in sect. 1 and, as our work in the
field is still in progress, we defer our further comments to the next section
where some our preliminary results will be presented.
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3.  Results and Discuasion .

Fig. lnwo report the real (la) and the imaginary part (1b) of N;y for a
low-density dispersion of binary clusters both oriented alike (Solid lines)
and at random (broken lines) versus the size parameter, x=kp, of the constitu-
.ent spheres, which are homogeneous with n=1.3. All the curves aie normalized
to the cérresponding quéntitips of a dispersion of independent spheres with
the same density and refractive index and show not only a ncticeable depen-
dence oh the orientation but also that for a cluster of given geometry there
exist a value of the size at which this dependence disappear. Our experience
suggests that this pseudo-spherical behavior 138 bound to appear for some value
of the size when the cluﬁters have a definite symmetry.

(6] S R B 7. : v

Fig. la Fig. 1lb

deslt with dispersions of layered
constant

As anticipated in sect. 1, we also
spheres which we treated as explained :n ref.[3]. In short, we kep:
the dielectric function within each laver and between each pair of them inter-
posed a transition layer, as th.n as possible, within which the radial depen-
dence of the dielestric function is taxen so as to ensure the continuity of €
and of its radial derivative. We considered in this way spheres with a diffuse
surface, metal spheres with a diel2c:izic or metallic coating and dielectric
spheres with a metallic coating. The dielectric function of the metal was de-
scribed by a ‘free-electron Drude funct:on, while that of the dielectric was
described by a damped oscillator functicn. The most striking result is shown
in fig. 2 which refers to spheres of MgdO coated with Al with a total radius of
50A. It is quite evident that the absorgtion peaks of the dispersion of single

spheres (solid lines) shift according to the thickness of the coating: thus
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this feature can be, :n princaple,

.

used to obtain a selective absorp-

tion at any frequency within a given

Im (€

range. Nevertheless this effect can
be greatly weakened if a considera-
ble percentage of the sphéres'aqgre-
gate {(broken lines).

At last we give here an antici-
pation of our present attempt to use
at besi the potentialities of the
effective dielectric constant meth- ' *
ods beyond the mixing ruled of ,
Bruggeman and of Maxwell-Garnett. In ,,
fig. 3 we present our results for . .
one of the conceivable intermediate
models between that of Bruggeman and
that of Maxwell-Garnett. This model !

consists of an admixture of metal
and dielectric spheres (thesa latter

with dielectric constant e=1) .

Around each metal sphere we put a
exclusion nole in. the form of a
layer ‘of variable thickness with




714 Borghese et al H.P.A,

dielectric constant g£=1.The curves in fig. 3 are labeled by the percentage of

volume occupied by the exclusiom holes. The curve labelled B refers to the

conventionel Bruggeman rulae. All the spheies'uere dealt with through the full

Mie theory. The main result of ocur talculation is a dramatic shift of the ' l
pe:cola:;on threshcld as a consequence of the correlation of exclusion we

forced on the system.
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ABSTRACT

A selection of clusters composed of 20 spheres, simulating irregularly shaped
particles often observed ia powders, are used to model a low density monodispersed
aerosol for which the absorption coefficient i calculated. Also calculations will be
shown for small clusters { composed of 2 spheres) baving the same optical
characteristics as those of existing experimental data with which compmn will be

made.

1. lotroduction.

The fact that aerosol particles, but for

¢ few exceptions, are not spherical, nor caa be
described as cpherical in consideration of their
optical properties, is well known. It is a0t
surprising that the optical behaviour of aerosol
particles as calculated using Mie Theory is se)
.dom consistent with the experimeatally
observed data, since the Mie theory s based
apon the sphericity of the scatterer. It s how-
ever important to achieve a reasonable confi-
dence in solving the problem of scattering by
an irregularly shaped particle. The problem is
not easily solved and special difficulties arise
when the scatterer is equal to or larger than
the wavelength of the mncident light saad when

the index of refraction of the surrounding

mediom differs more than for a small amount.
We bave developed s formalism which allows
us to describe an irregularly shaped parti

cl' | and the calculation of the properties

of such a complex scatterer can be pérformed
following the approach outlined. in previous
works!*¥ Having obtained in this manner the
optical properties of a single scatterer thea the
aext otep o to calculate the macroscopic opti-
cal comstants for the propagation through a
model serosol. We will show that our compu-
tation for two spheres agree with experimental
results™™, then we will discuse the case of rome
complex structures which are types found
commonly in powders!?-t3

3. Theory.

We refer you to other papers for the
details of the computations and their justifica
tions, sed='1 | here simply accept that we
can write the extinction cross section of a
whole cluster, where a cluster is the geometri-
cal description of a particle, in the form

O = < VS|V > S
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where the rhatrix 8 depends oaly os the
structurs of the cluster:

8= 1% |T|xe®*® (@

The matrin 8 includes all the information on
the scattering power of the cluster as & whole {
s eclaments depend oaly oa the scattering
power of the spheres of the cluster aad ou the
relative positions of their centars). In oq.(2),
the matiices 1 sad T were defined preve
owsly!™. Matrix 1 has the role of referring the
amplitudes of the multipole fields scattered by

esch sphere 1o the origia of the coordinates.

The matrin T of the form:

L) ), .
T= gm ;m )]
which must be calcnlated e the invarse of the
matrix : -
[ Sl | X
Ma 1 mm]-n*! 1)

and which is determined by the otrucure of the
cluater The matrix V represents the
amplicudes of the multipole fields aad its el
ments make oq.(1} dependent on the direction

of incidence. The matrix H describes in the

vicinity of the surface of each sphere the mul
tipole flelds scattered by the other spheres of
the cluster. The matrix X represents the
crose terme of the multipole fields. Aad finally
the matrices RV andR‘® are the scattering
power of the single spheres composing the cluss
ter ( identical in physical meaning to the
terms A aad B in Van De Hulst¥),

3. Resuits snd Discvesion

Twe spheres — touchlog. The first set
of data will be that of the two spheres, which
will be compared with the experimental data
of Shuerman and Wang¥. The spheres are
touching, the quantities which we have com-
puted are the complex forward scattering
amplitude [S(0)| as s function of the sise
puwameter ks = 2re/) of the cluster. The
geometry and all thé parameters we have used
and that we report are the sumne as the experi-

owats for which we compare. Following we
reproduce the axperimental setup:

the following graph shows our calculated data
(solid iime) and the experimental deta (dotted

liae).
. o

8~
st
3 4
o
1 i i
1 1.5 3
ke

30 Spheres. We will acw cousider clus- .
ters com,osed of 20 spheres in order to simu-
late some irregularly shaped aggregations often
found in powders!'" =% [n the figures we report
the quantitiez ['my/v, and [ omv,/7q for
several direction of incidence as & function of x

- the sise paramater ; where 7, ¥ the absorp-

tion coefficient of o dispersion of spheres of
size parametr x,,=20' y, whost number den-
sity equals that of the dispersion of clusters.
The quantity 7 i# the absorption coefficient for
the cluster randomly oriented and v, depends
on the orientation of the clusters with respect
to the incident plane—wave. The material’of
the spheres composing the cluster in all cases
was chosen to be bomogeneous isotropic,
dielectric, sad nondispersive with refractive
index wea1.3 and finally all the spheres in the

" clusters are identical.
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) figure 3 _ ) figure ¢
The cluster is defined a0 a Stnp aad its The cluster is defined 20 3 Empty rectangle
geometric fextures are shown above.  [a the . and its geomatric features are shown above, In
graph below the cluster I' {broken curve) and

the graph below the cluster T' (broken curve)
and T, (solid lines) versus y for several direc-
tioas of incidesce for s dispersion of empty
rectangles. The incident plane wave is circu-
larly polarised. The angles of incidence
{teta,d) , in degrees, labeling the I'y curves
are related to the common orientatioa of the
clusters.

T (s0lid lines) versus x for several directions
of incidence for & dispersion of strips. The
incident plane wave is circalarly polarised.
The angles of incidence (teta,¢) , in degrees,
labeling the [y, curves are related to the com-
mon orientation of the clusters
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figure §

The claster s defined a8 a Rectangls and ite
geometric festures are shown above. In the
graph below the cluster I' (brokes curve} and
[ (s0lid lings) versus x for several directions
of incidence for a dispersion of rectangles. The
incident plafie wave s circolarly polarised.
The angles of incidence (teta,é) , in degrees,
labeliag the I’y curves are related to the com-
mon orientation of the clusters.

—
i 0.0

0.05 01 p
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figure ¢
The cluster » defined @ 2 Netwerk and ite
geometric features are shown above. In the
graph below the cluster I’ {broken curve) and
:“. (-?jid lines) versus x for several directions

incident plane ware i circalarly polarised.
The angles of incidence {tota,4) , in degrees,
labeling the Iy, carves are related to the com-
moa oriestation of the clusters.

0.05 a1 ]

for & dispersion of networks. The
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figare 7

The cluster is defined as & Roofing Ale and ite
geometric festures are shown above. ls the
©aph below the cluster T (brokea curve) and
Ty (solid lines) versus x for several directions
of iacideace for » dispersion of roofing tiles.
The incident plane wave is circularly polarised.
The angles of incidence (teta,d) , ia degrees,
labeling the T, curves are related to the come
mon orientation of the clustery.

0.05 0.1 x
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X
figure &

The cluster is defined 28 2 Angular strp and
its geometric features are show. sbove. In the
aph below the cluster T (brokes curve) and
Te (s0lid lines) versus x for several directions
of incidence for a dispersion of angular strips,
The incident plane wave is circularly polarised.
The angles of incidence (teta,g) , in degrees,
labeling the I'y curves are related to the com-
mon orientation of the clusters.
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On the basis of the results. shown, we
can conclude that the aborption efficisncy of a

-random dispersion of identical scattecers

appreciably depends on the degree of anyso
tropy of the single scatterers. Witkin large
limits of the sise paramaeter, however, several
kinds of anysotropy give very similar results,
as far a8 the compactness is comparable. Ultic
mately, in & random dispersion the size distri-
bution of the scatterers as inferred from opti-
cal data should not be considered reliable if

the single scatterers are appreciably anisotro-
pklllﬂ.
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Density dependence of the absorption coefficient
of a dispersion of spherical metal particles®

E. Fucile, P. Denti, R. Saija, F. Borghese
Universita di Messina, Istituto di Struttura della Materia
Salita Sperone 31, 98166 S. Agata-Messina, ITALY

In this paper we make an attempt to assess t0 what extent the absorption coefficient
of a dispersion of spherical scatterers is influenced by the multiple scattering effects. To
this end the scatterers of the dispersion are considered as aggregated in pairs (even if they
are not in contact). The field scattered by each pair is the computed by means of a the-
ory we developed in the last few years just to deal with aggregates of spherical scatterers.
Of course, the field scattered by each pair depends on its orientation with respect to the
incoming field as well as on the separation of the component spheres. By means of the
theory cited above, we are able to sum analitically over the orientations to get the a scat-
tered field that is still a function of the distance of the spheres composing the pair. At this
stage we make an weighted average over the distances using as a weight the pair correla-
tion function for a dispersion with the density we are dealing with. As a result we get the .
field scattered by each sphere dressed by the effect of multiple scattering processes pro-
duced by the other particles. Of course this procedure yields only a first approximation as
only pair effects are included while those produced by triplets and higher order multiplets
of particles are neglected. We are able to show that the results we get amount to solve
iteratively the exact Foldy-Twersky integral equation up to the third order iteration.

*Based on work supported in part by the U. S. Ay European Research Office through Contract
DAJA45-86-C-0003 and in part by the Consiglio Nazionale delle Ricerche through the Gruppo Nazionale
Struttura della Matcria .
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Reliability of the theoretical description of electromagnetic scattering
from nonspherical particles.

F. Borghese, P. Denti.‘R.Saija
Universita di Messina, Istituto di Struttura della Materia,
P.0. Box 57, 98166 S. Agata Messina, ITALY

0.I. Sindoni
Chemical Research Development and Engineering Center,
Aberdeen P.G. 21010 Md, USA

It is well known that the most common derosols are composed either of.
irregularly-shaped particles, or of spherical particles that may undergo
aggregation phenomena which in their turn give rise to effectively non iso-
tropic compound scatterers. It is therefore not surprising that the inter-
pretation of the optical behaviour of aerosols based on the well known Mie
theory are often unsatisfactory.

A few years ago we devised a method suitable to calculate the scatte-
ring of electromagnetic waves form a cluster of spherical scatterers of
-known geometry. Our purpose was to account for the effect of the anysotropy
of ‘the scattering particles without undue computational effort and to see
to what extent a2 truely 1rregu1arly shaped particle could be approximated
by 4 simpler system.

To describe the scattering by such a compound scatterer we make full
use of the possibility of expanding both the incident and the scattered
field in a series of spherical multipoles. As a consequence we are able to
describe both the clectric and the magnetic multipoles on the same footing
without introducing any approximation but the truncation of the multxpolar
expansions'in order to get a finite set of equations. (1),

The calculations we performed on clusters of various geometry show,
as expected, a noticcable dependence on the extinction cross section (as
well as of the scattering cross section) on the polarization and on the
direction of incidence of the planc wave. Furthermore, thank to the trans-
formation properties of the spherical multipoles under rotation, we were
able to show that the forward-scattering amplitude of any cluster depends
analytically on the direction of incidence in a rather simple way.

All the features mentioned above are of invaluable help when comparing
the results of our approach to the experimental data. Nevertheless, before
wve make the actual comparison with the experimental measurements of Schuer-
man:, Wang and Greenberg(2) we recall some facts about the convergenéy'of
any calculation based on multipolar expansions. '

For a single sphere, of radius b, the convergency of the calculations
depends on the product x=kb, the so called size-parameter of the scatterer,
k being the magnitude of the incident wave vector. If Ly is the maximum
multipolar order entering the calculations, the convergency requires LH7x.
For a cluster of spheres we showed that the parameter corresponding to x is
Xq =kb, , by being the radius of the smaller sphere that can include the
whole cluster. Even in this case a good convergency is achieved only for
Ly>xo. In any case scattering objects with the same x (or x,) have the same
scattering features, provided, of course, that the refractive index is. non
dispersive.

In figure 1 we show the experimental setup used by Schuerman and Wang
to perform their mesurements on single clusters as a function of the direc-
tion of incidence. We notice that to ensure the reproducibility of the
results only the polarization indicated in figure 1 can be used.

ohJ)
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Fig: 1

In figure 2 and 3} we report the results of our calculations, for both
orthogonal and parallel polarization, for a cluster of two spheres as a fun-
ction of the direction of incidence, together with the corresponding experi-
mental results of Schuerman, Wang and Greenberg(3). More precisely, on the
axcs are reported the real, Q, and the immaginary, P, parts of the forward
scattering amplitude of the cluster.

Fig. 2 Fig. 3
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o Orthogonal peolarization (experiments], ref.3)
+ Orthogonatl polarizstion (calculsted)
Q Parailel poisrization (calculated)




Both figure 2 and figure 3 show that the agreement between the experimental
and the theoretical results is rather good. We state this also on the follo-
wving considerations. First, Schuerman and Wang{(3) extimate the experimental
error in about 10X in magnitude and 12° in phase. Second, the angular depen-
dence of the forward scattering amplitude can be determined analytically,
and our theoretical curves are consistent with such anguiar dependence.

We want only to stress that according to the parameters reported in
fig.2 and fig.3 the convergency of our calculations would require at least
Ly=6. Actually we have to use Ly=10 for both cases. Any further increase of
Ly has no effect on the results thus proving that we get the best converge-
ce achievable through this kind of expansion of the field.

Fig. 4
° A i i -
- 4 x23.733
m=1.81+40.004
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In figure 4 we report the results for a cluster of two spheres whose
distance is gradually increased. On account of the considerations reported
above, when x, 15 the convergency would require Ly¥30. This cannot be done
without using delicate numerical procedurces which in turn require a very
large and fast computer. For this reason our present results fit satisfac-
torily the experimental results only for small values of x,, although the
uncertainty of the experimental data must, even in this case, be taken in-
to account.

In conclusion we can state that our approach is able to describe cor-
rectly the scattering from a cluster of spheres. At present we are impro-
ving the programs to include the possibility of extending the multipolar
expansion to very high values of Ly. In any case both the theoretical and
the experimental approach mutually support the respective findings.
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